الفصل الخامس: العلاقات والدوال النسبية

العبارة النسبية

النسبة بين كثيرتي حدود	المقصود بها
$\frac{x-8}{x^2+5x+6}$, $\frac{6c}{5d-8a}$, $\frac{1700}{d-33}$	أمثلة توضيحية
(1) نحلل كلاً من البسط والمقام إلى العوامل. (2) نقسم كلاً من البسط والمقام على العامل المشترك الأكبر بينهما « GCF ».	طرق تبسيطها
$\frac{x-1}{x^2-6x+5} = \frac{x-1}{(x-5)(x-1)} = \frac{1}{x-5}$	مثال توضيحي
العبارة النسبية تكون غير معرّفة عند القيم التي تجعل المقام مساويًا للصفر	تنبيه
$X = 5$ العبارة $\frac{1}{x-5}$ تكون غير معرّفة عند	مثال توضيحي

ضرب العبارات النسبية

$\frac{a}{b}$, $\frac{c}{d}$ فإن وذا كانت $\frac{a}{b}$, $\frac{c}{d}$ فإن	التعبير الرمزي لضرب
$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$	عبارتين نسبيتين
عند ضرب عبارتين نسبيتين (1) نحلل كلاً من البسط والمقام إلى عوامل. (2) نختصر العوامل المشتركة بين البسط والمقام.	طريقته
$\frac{3x}{2y} \cdot \frac{4y^2}{x^2} = \frac{3 \cdot x \cdot 2 \cdot 2 \cdot y \cdot y}{2 \cdot y \cdot x \cdot x} = \frac{3 \cdot \cancel{x} \cdot \cancel{2} \cdot \cancel{2} \cdot \cancel{y} \cdot \cancel{y}}{\cancel{2} \cdot \cancel{y} \cdot \cancel{x} \cdot x} = \frac{6y}{x}$	مثال توضيحي

قسمة العبارات النسبية

عند قسمة عبارة نسبية على أخرى نضرب المقسوم في مقلوب المقسوم عليه	طريقتها
اذا كانت $\frac{a}{b}$, $\frac{c}{d}$ عبارتين نسبيتين حيث $b \neq 0$, $d \neq 0$, $c \neq 0$ فإن	التوضيح
$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$	بالرموز
$\frac{3z^2}{2y} \div \frac{z}{4x} = \frac{3z^2}{2y} \cdot \frac{4x}{z} = \frac{3 \cdot \cancel{z} \cdot z \cdot \cancel{z} \cdot 2 \cdot x}{\cancel{z} \cdot y \cdot \cancel{z}} = \frac{6xz}{y}$	مثال توضيحي
• المقصود به: عبارة نسبية بسطها ومقامها أو أحدهما عبارة نسبية أيضًا. $\frac{\frac{c}{6}}{5d}, \frac{\frac{x-3}{8}}{\frac{x-2}{x+4}}, \frac{\frac{4}{x}+6}{\frac{12}{a}-3}$ • أمثلة توضيحية: $\frac{\frac{12}{6}}{3}$	الكسر المركب

لتبسيط الكسر المركب يُكتب أولاً على صورة قسمة عبارتين	فائدة
$\frac{\frac{4}{x}+6}{\frac{12}{a}-3} = \left(\frac{4}{x}+6\right) \div \left(\frac{12}{a}-3\right)$	مثال توضيحي

جمع العبارات النسبية

(1) نُوجد المضاعف المشترك الأصغر « LCM » للمقامات. (2) نُعيد كتابة العبارات بحيث يكون مقاماتها هي LCM . (3) نجمع البسوط لنفس المقام ثم نُبسط الناتج إن أمكن.	خطوات جمع العبارات النسبية
ا فإن $\frac{a}{b}$ عبارتين نسبيتين؛ حيث $\frac{a}{b}$, $\frac{c}{d}$ فإن $\frac{a}{b}$ + $\frac{c}{d}$ = $\frac{ad}{bd}$ + $\frac{bc}{bd}$ = $\frac{ad+bc}{bd}$	التوضيح بالرموز
(1) نُحلل كلاً منهما إلى عوامل.	خطوات إيجاد LCM
(2) نضرب كل العوامل التي لها أكبر أس.	لعددين أو لكثيرتي حدود
الإیجاد LCM بین LCM بین 15abc , $8b^3c^4$ نتبع التالي: أو لأً: نُحلل كلاً منها إلى عوامل أو لاً: نُحلل كلاً منها إلى عوامل $12a^2b = 3 \cdot 2^2 \cdot a^2 \cdot b$, $15abc = 3 \cdot 5 \cdot a \cdot b \cdot c$, $8b^3c^4 = 2^3 \cdot b^3 \cdot c^4$ ثانیًا: نوجد LCM بضرب العوامل التي لها أكبر أس $LCM = 3 \cdot 2^3 \cdot 5 \cdot a^2 \cdot b^3 \cdot c^4 = 120a^2b^3c^4$	مثال توضيحي

طرح العبارات النسبية

(1) نُوجد المضاعف المشترك الأصغر « LCM » للمقامات. (2) نُعيد كتابة العبارات بحيث يكون مقاماتها هي LCM . (3) نطرح البسوط لنفس المقام ثم نُبسط الناتج إن أمكن.	خطوات طرح العبارات النسبية
ا فإن $\frac{a}{b}$ عبارتين نسبيتين؛ حيث $\frac{a}{b}$, $\frac{c}{d}$ فإن $\frac{a}{b}$ - $\frac{c}{d}$ = $\frac{ad}{bd}$ - $\frac{bc}{bd}$ = $\frac{ad-bc}{bd}$	التوضيح بالرموز

الدالة الرئيسة « الأم » لدوال المقلوب

$$x \neq 0$$
, $f(x) = \frac{1}{x}$

قاعدتها

Thank you for using www.freepdfconvert.com service!

Only two pages are converted. Please Sign Up to convert all pages.

https://www.freepdfconvert.com/membership